
(The following remarks are extracted from Sun's Numerical
Computation Guide Appendix
D, an expansion upon David Goldberg's "What Every
Computer Scientist Should Know
About Floating-Point Arithmetic". Page numbers
refer to that document.)

Contents:

Current IEEE 754 Implementations
Pitfalls in Computations on Extended-Based Systems
Programming Language Support for Extended Precision
Conclusion

Differences Among IEEE 754 Implementations

Note: This section is not part of the published paper. It has been
added to clarify certain
points and correct possible misconceptions about
the IEEE standard that the reader might
infer from the paper. This material
was not written by David Goldberg, but it appears here
with his permission.

The preceding paper has shown that floating-point arithmetic must be
implemented
carefully, since programmers may depend on its properties for the
correctness and
accuracy of their programs. In particular, the IEEE standard
requires a careful
implementation, and it is possible to write useful programs
that work correctly and deliver
accurate results only on systems that conform
to the standard. The reader might be
tempted to conclude that such programs
should be portable to all IEEE systems. Indeed,
portable software would be
easier to write if the remark on page 195, "When a program is
moved between
two machines and both support IEEE arithmetic, then if any intermediate
result
differs, it must be because of software bugs, not from differences in
arithmetic,"
were true.

Unfortunately, the IEEE standard does not guarantee that the same program
will deliver
identical results on all conforming systems. Most programs will
actually produce different
results on different systems for a variety of
reasons. For one, most programs involve the
conversion of numbers between
decimal and binary formats, and the IEEE standard
doesn't completely specify
the accuracy with which such conversions must be performed.
For another, many
programs use elementary functions supplied by a system library, and
the
standard doesn't specify these functions at all. Of course, most programmers
know that
these features lie beyond the scope of the IEEE standard.

Many programmers may not realize that even a program that uses only the
numeric
formats and operations prescribed by the IEEE standard can compute
different results on
different systems. In fact, the authors of the standard
intended to allow different

implementations to obtain different results. Their
intent is evident in the definition of the
term destination in the IEEE
754 standard: "A destination may be either explicitly
designated by the user
or implicitly supplied by the system (for example, intermediate
results in
subexpressions or arguments for procedures). Some languages place the results
of intermediate calculations in destinations beyond the user's control.
Nonetheless, this
standard defines the result of an operation in terms of that
destination's format and the
operands' values." (IEEE 754-1985, p. 7) In
other words, the IEEE standard requires that
each result be rounded correctly
to the precision of the destination into which it will be
placed, but the
standard does not require that the precision of that destination be
determined
by a user's program. Thus, different systems may deliver their results to
destinations with different precisions, causing the same program to produce
different
results (sometimes dramatically so), even though those systems all
conform to the
standard.

Several of the examples in the preceding paper depend on some knowledge of
the way
floating-point arithmetic is rounded. In order to rely on examples
such as these, a
programmer must be able to predict how a program will be
interpreted, and in particular,
on an IEEE system, what the precision of the
destination of each arithmetic operation may
be. Alas, the loophole in the
IEEE standard's definition of destination undermines the
programmer's
ability to know how a program will be interpreted. Consequently, several of
the examples given above, when implemented as apparently portable programs in
a high-
level language, may not work correctly on IEEE systems that normally
deliver results to
destinations with a different precision than the programmer
expects. Other examples may
work, but proving that they work may lie beyond
the average programmer's ability.

In this section, we classify existing implementations of IEEE 754 arithmetic
based on the
precisions of the destination formats they normally use. We
then review some examples
from the paper to show that delivering results in
a wider precision than a program expects
can cause it to compute wrong results
even though it is provably correct when the
expected precision is used. We
also revisit one of the proofs in the paper to illustrate the
intellectual
effort required to cope with unexpected precision even when it doesn't
invalidate our programs. These examples show that despite all that the IEEE
standard
prescribes, the differences it allows among different implementations
can prevent us from
writing portable, efficient numerical software whose
behavior we can accurately predict.
To develop such software, then, we must
first create programming languages and
environments that limit the variability
the IEEE standard permits and allow programmers
to express the floating-point
semantics upon which their programs depend.

Current IEEE 754 Implementations

Current implementations of IEEE 754 arithmetic can be divided into two groups
distinguished by the degree to which they support different floating-point
formats in

hardware. Extended-based systems, exemplified by the Intel
x86 family of processors,
provide full support for an extended double precision
format but only partial support for
single and double precision: they provide
instructions to load or store data in single and
double precision, converting
it on-the-fly to or from the extended double format, and they
provide special
modes (not the default) in which the results of arithmetic operations are
rounded to single or double precision even though they are kept in registers
in extended
double format. (Motorola 68000 series processors round results to
both the precision and
range of the single or double formats in these modes.
Intel x86 and compatible processors
round results to the precision of the
single or double formats but retain the same range as
the extended double
format.) Single/double systems, including most RISC processors,
provide
full support for single and double precision formats but no support for an
IEEE-
compliant extended double precision format. (The IBM POWER architecture
provides
only partial support for single precision, but for the purpose of this
section, we classify it
as a single/double system.)

To see how a computation might behave differently on an extended-based
system than on
a single/double system, consider a C version of the example from
page 211:

int main() {

 double q;

 q = 3.0/7.0;

 if (q == 3.0/7.0) printf("Equal\n");

 else printf("Not Equal\n");

 return 0;

}

Here the constants 3.0 and 7.0 are interpreted as double precision
floating-point numbers,
and the expression 3.0/7.0 inherits the double
data type. On a single/double system, the
expression will be evaluated in
double precision since that is the most efficient format to
use. Thus,
q will be assigned the value 3.0/7.0 rounded correctly to double
precision. In
the next line, the expression 3.0/7.0 will again be evaluated
in double precision, and of
course the result will be equal to the value just
assigned to q, so the program will print
"Equal" as expected.

On an extended-based system, even though the expression 3.0/7.0 has type
double, the
quotient will be computed in a register in extended double
format, and thus in the default
mode, it will be rounded to extended double
precision. When the resulting value is
assigned to the variable q,
however, it may then be stored in memory, and since q is
declared
double, the value will be rounded to double precision.
In the next line, the
expression 3.0/7.0 may again be evaluated in extended
precision yielding a result that
differs from the double precision value stored
in q, causing the program to print "Not
Equal". Of course, other
outcomes are possible, too: the compiler could decide to store
and thus round
the value of the expression 3.0/7.0 in the second line before comparing it

with
q, or it could keep q in a register in extended precision
without storing it. An
optimizing compiler might evaluate the expression
3.0/7.0 at compile time, perhaps in
double precision or perhaps in extended
double precision. (With one x86 compiler, the
program prints "Equal" when
compiled with optimization and "Not Equal" when compiled
for debugging.)
Finally, some compilers for extended-based systems automatically change
the
rounding precision mode to cause operations producing results in registers to
round
those results to single or double precision, albeit possibly with a wider
range. Thus, on
these systems, we can't predict the behavior of the program
simply by reading its source
code and applying a basic understanding of IEEE
754 arithmetic. Neither can we accuse
the hardware or the compiler of failing
to provide an IEEE 754 compliant environment;
the hardware has delivered a
correctly rounded result to each destination, as it is required
to do, and
the compiler has assigned some intermediate results to destinations that are
beyond the user's control, as it is allowed to do.

Pitfalls in Computations on Extended-Based Systems

Conventional wisdom maintains that extended-based systems must produce results
that
are at least as accurate, if not more accurate than those delivered on
single/double
systems, since the former always provide at least as much
precision and often more than
the latter. Trivial examples such as the C
program above as well as more subtle programs
based on the examples discussed
below show that this wisdom is naive at best: some
apparently portable
programs, which are indeed portable across single/double systems,
deliver
incorrect results on extended-based systems precisely because the compiler
and
hardware conspire to occasionally provide more precision than the program
expects.

Current programming languages make it difficult for a program to specify
the precision it
expects. As the section "Languages and Compilers" on page
214 mentions, many
programming languages don't specify that each occurrence
of an expression like 10.0*x
in the same context should evaluate to
the same value. Some languages, such as Ada, were
influenced in this respect
by variations among different arithmetics prior to the IEEE
standard. More
recently, languages like ANSI C have been influenced by standard-
conforming
extended-based systems. In fact, the ANSI C standard explicitly allows a
compiler to evaluate a floating-point expression to a precision wider than that
normally
associated with its type. As a result, the value of the expression
10.0*x may vary in ways
that depend on a variety of factors: whether
the expression is immediately assigned to a
variable or appears as a
subexpression in a larger expression; whether the expression
participates in a
comparison; whether the expression is passed as an argument to a
function, and
if so, whether the argument is passed by value or by reference; the current
precision mode; the level of optimization at which the program was compiled;
the
precision mode and expression evaluation method used by the compiler when
the program
was compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression
evaluation.
Extended-based systems run most efficiently when expressions are
evaluated in extended
precision registers whenever possible, yet values that
must be stored are stored in the
narrowest precision required. Constraining a
language to require that 10.0*x evaluate to
the same value everywhere
would impose a performance penalty on those systems.
Unfortunately, allowing
those systems to evaluate 10.0*x differently in syntactically
equivalent contexts imposes a penalty of its own on programmers of accurate
numerical
software by preventing them from relying on the syntax of their
programs to express their
intended semantics.

Do real programs depend on the assumption that a given expression always
evaluates to
the same value? Recall the algorithm presented in Theorem 4 for
computing ln(1 + x),
written here in Fortran:

real function log1p(x)

real x

if (1.0 + x .eq. 1.0) then

 log1p = x

else

 log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)

endif
return

On an extended-based system, a compiler may evaluate the expression 1.0
+ x in the
third line in extended precision and compare the result with
1.0. When the same
expression is passed to the log function in the
sixth line, however, the compiler may store
its value in memory, rounding it
to single precision. Thus, if x is not so small that 1.0 +
x
rounds to 1.0 in extended precision but small enough that 1.0 +
x rounds to 1.0 in
single precision, then the value returned by
log1p(x) will be zero instead of x, and the
relative error
will be one---rather larger than five rounding errors. Similarly, suppose
the
rest of the expression in the sixth line, including the reoccurrence of
the subexpression
1.0 + x, is evaluated in extended precision. In
that case, if x is small but not quite small
enough that 1.0 +
x rounds to 1.0 in single precision, then the value returned by
log1p(x) can exceed the correct value by nearly as much as x,
and again the relative
error can approach one. For a concrete example, take
x to be 2-24 + 2-47, so x is the
smallest single precision number such that 1.0 + x rounds up to the
next larger number,
1 + 2-23. Then log(1.0 + x) is
approximately 2-23. Because the denominator in the
expression
in the sixth line is evaluated in extended precision, it is computed exactly
and
delivers x, so log1p(x) returns approximately
2-23, which is nearly twice as large as the
exact value. (This
actually happens with at least one compiler. When the preceding code is
compiled by the Sun WorkShop Compilers 4.2.1 Fortran 77 compiler for x86
systems
using the -O optimization flag, the generated code computes
1.0 + x exactly as

described. As a result, the code delivers zero for
log1p(1.0e-10) and 1.19209E-07 for
log1p(5.97e-8).)

For the algorithm of Theorem 4 to work correctly, the expression 1.0 +
x must be
evaluated the same way each time it appears; the algorithm can
fail on extended-based
systems only when 1.0 + x is evaluated to
extended double precision in one instance and
to single or double precision
in another. Of course, since log is a generic intrinsic function
in Fortran, a compiler could evaluate the expression 1.0 + x in
extended precision
throughout, computing its logarithm in the same precision,
but evidently we cannot
assume that the compiler will do so. (One can also
imagine a similar example involving a
user-defined function. In that case,
a compiler could still keep the argument in extended
precision even though the
function returns a single precision result, but few if any existing
Fortran
compilers do this, either.) We might therefore attempt to ensure that 1.0
+ x is
evaluated consistently by assigning it to a variable.
Unfortunately, if we declare that
variable real, we may still be
foiled by a compiler that substitutes a value kept in a
register in extended
precision for one appearance of the variable and a value stored in
memory in
single precision for another. Instead, we would need to declare the variable
with a type that corresponds to the extended precision format. Standard
FORTRAN 77
does not provide a way to do this, and while Fortran 90 offers the
SELECTED_REAL_KIND
mechanism for describing various formats, it does
not explicitly require implementations
that evaluate expressions in extended
precision to allow variables to be declared with that
precision. In short,
there is no portable way to write this program in standard Fortran that
is
guaranteed to prevent the expression 1.0 + x from being evaluated
in a way that
invalidates our proof.

There are other examples that can malfunction on extended-based systems
even when
each subexpression is stored and thus rounded to the same precision.
The cause is double-
rounding. In the default precision mode, an
extended-based system will initially round
each result to extended double
precision. If that result is then stored to double precision, it
is rounded
again. The combination of these two roundings can yield a value that is
different than what would have been obtained by rounding the first result
correctly to
double precision. This can happen when the result as rounded to
extended double
precision is a "halfway case", i.e., it lies exactly halfway
between two double precision
numbers, so the second rounding is determined by
the round-ties-to-even rule. If this
second rounding rounds in the same
direction as the first, the net rounding error will
exceed half a unit in the
last place. (Note, though, that double-rounding only affects
double precision
computations. One can prove that the sum, difference, product, or
quotient of
two p-bit numbers, or the square root of a p-bit number, rounded
first to q bits
and then to p bits gives the same value as if
the result were rounded just once to p bits
provided q >= 2p + 2. Thus, extended double precision is
wide enough that single
precision computations don't suffer double-rounding.)

Some algorithms that depend on correct rounding can fail with
double-rounding. In fact,
even some algorithms that don't require correct
rounding and work correctly on a variety
of machines that don't conform to IEEE
754 can fail with double-rounding. The most
useful of these are the portable
algorithms for performing simulated multiple precision
arithmetic mentioned on
page 186. For example, the procedure described in Theorem 6 for
splitting a
floating-point number into high and low parts doesn't work correctly in
double-
rounding arithmetic: try to split the double precision number
252 + 3 × 226 - 1 into two
parts each with at most
26 bits. When each operation is rounded correctly to double
precision, the
high order part is 252 + 227 and the low order part is
226 - 1, but when each
operation is rounded first to extended double
precision and then to double precision, the
procedure produces a high order
part of 252 + 228 and a low order part of -226
- 1. The
latter number occupies 27 bits, so its square can't be computed
exactly in double precision.
Of course, it would still be possible to compute
the square of this number in extended
double precision, but the resulting
algorithm would no longer be portable to single/double
systems. Also, later
steps in the multiple precision multiplication algorithm assume that all
partial products have been computed in double precision. Handling a mixture
of double
and extended double precision variables correctly would make the
implementation
significantly more expensive.

Likewise, portable algorithms for adding multiple precision numbers
represented as arrays
of double precision numbers can fail in double-rounding
arithmetic. These algorithms
typically rely on a technique similar to Kahan's
summation formula. As the informal
explanation of the summation formula given
on page 239 suggests, if s and y are floating-
point variables
with |s| >= |y| and we compute:

t = s + y;

e = (s - t) + y;

then in most arithmetics, e recovers exactly the roundoff error that
occurred in computing
t. This technique doesn't work in
double-rounded arithmetic, however: if s = 252 + 1 and
y = 1/2 - 2-54, then s + y rounds first to
252 + 3/2 in extended double precision, and this
value rounds to
252 + 2 in double precision by the round-ties-to-even rule; thus,
the net
rounding error in computing t is 1/2 + 2-54, which
isn't representable exactly in double
precision and so can't be computed
exactly by the expression shown above. Here again, it
would be possible to
recover the roundoff error by computing the sum in extended double
precision,
but then a program would have to do extra work to reduce the final outputs
back
to double precision, and double-rounding could afflict this process,
too. For this reason,
although portable programs for simulating multiple
precision arithmetic by these methods
work correctly and efficiently on a
wide variety of machines, they don't work as
advertised on extended-based
systems.

Finally, some algorithms that at first sight appear to depend on correct
rounding may in
fact work correctly with double-rounding. In these cases, the
cost of coping with double-
rounding lies not in the implementation but in the
verification that the algorithm works as
advertised. To illustrate, we prove
the following variant of Theorem 7:

Theorem 7'

If m and n are integers representable in IEEE 754 double precision
with |m| < 252 and n
has the special form n =
2i + 2j, then fl(fl(m /
n) × n) = m, provided both floating-point
operations
are either rounded correctly to double precision or rounded first to extended
double precision and then to double precision.

Proof

Assume without loss that m > 0. Let q = fl(m /
n). Scaling by powers of two, we can
consider an equivalent setting
in which 252 <= m <
253 and likewise for q, so that both
m and q
are integers whose least significant bits occupy the units place (i.e.,
ulp(m) =
ulp(q) = 1). Before scaling, we assumed m <
252, so after scaling, m is an even integer.
Also, because
the scaled values of m and q satisfy m/2 < q
< 2m, the corresponding value
of n must have one of two
forms depending on which of m or q is larger: if q <
m, then
evidently 1 < n < 2, and since n is a sum
of two powers of two, n = 1 + 2-k for some k;
similarly, if q > m, then 1/2 < n < 1, so
n = 1/2 + 2-(k + 1). (As n is the
sum of two powers
of two, the closest possible value of n to one is
n = 1 + 2-52. Because m/(1 + 2-52) is no
larger than the next smaller double precision number less than m, we
can't have q = m.)

Let e denote the rounding error in computing q, so that
q = m/n + e, and the computed
value fl(q
× n) will be the (once or twice) rounded value of m +
ne. Consider first the case
in which each floating-point operation
is rounded correctly to double precision. In this
case, |e| < 1/2.
If n has the form 1/2 + 2-(k + 1), then
ne = nq - m is an integer multiple of
2-
(k + 1) and |ne| < 1/4 +
2-(k + 2). This implies that |ne| <= 1/4. Recall that the difference
between m
and the next larger representable number is 1 and the difference between
m and
the next smaller representable number is either 1 if m >
252 or 1/2 if m = 252. Thus, as ne

<= 1/4, m + ne will round to m.
(Even if m = 252 and ne = -1/4, the product will round
to
m by the round-ties-to-even rule.) Similarly, if n has the
form 1 + 2-k, then ne is an integer
multiple of
2-k and |ne| < 1/2 +
2-(k + 1); this implies |ne| <= 1/2. We can't have m = 252

in
this case because m is strictly greater than q, so m
differs from its nearest representable
neighbors by +/-1. Thus, as |ne| <= 1/2, again
m + ne will round to m. (Even if |ne| =
1/2, the
product will round to m by the round-ties-to-even rule because m
is even.) This
completes the proof for correctly rounded arithmetic.

In double-rounding arithmetic, it may still happen that q is the
correctly rounded quotient
(even though it was actually rounded twice), so
|e| < 1/2 as above. In this case, we can
appeal to the arguments
of the previous paragraph provided we consider the fact that fl(q
×
n) will be rounded twice. To account for this, note that the
IEEE standard requires that an
extended double format carry at least 64
significant bits, so that the numbers m +/-
1/2
and m +/- 1/4 are exactly representable
in extended double precision. Thus, if n has the
form 1/2 +
2-(k + 1), so that |ne| <= 1/4, then rounding m + ne to extended double
precision must produce a result that differs from m by at most 1/4,
and as noted above, this
value will round to m in double precision.
Similarly, if n has the form 1 + 2-k, so that
|ne|

<= 1/2, then rounding m +
ne to extended double precision must produce a result that
differs
from m by at most 1/2, and this value will round to m in double
precision. (Recall
that m > 252 in this case.)

Finally, we are left to consider cases in which q is not the
correctly rounded quotient due
to double-rounding. In these cases, we have
|e| < 1/2 + 2-(d + 1) in the worst case,
where d
is the number of extra bits in the extended double format. (All
existing extended-based
systems support an extended double format with exactly
64 significant bits; for this
format, d = 64 - 53 = 11.) Because
double-rounding only produces an incorrectly rounded
result when the second
rounding is determined by the round-ties-to-even rule, q must be
an
even integer. Thus, if n has the form 1/2 +
2-(k + 1), then ne = nq - m
is an integer
multiple of 2-k, and |ne| < (1/2 +
2-(k + 1))(1/2 +
2-(d + 1)) = 1/4 +
2-(k + 2) + 2-(d + 2) +
2-
(k + d + 2). If k <= d, this implies |ne| <= 1/4. If k > d, we have |ne|
 <= 1/4 + 2-(d + 2).
In either case, the first rounding of the product will deliver a result that
differs from m by
at most 1/4, and by previous arguments, the second
rounding will round to m. Similarly, if
n has the form 1 +
2-k, then ne is an integer multiple of
2-(k - 1), and |ne| < 1/2 +
2-(k + 1) +
2-(d + 1)
+ 2-(k + d + 1). If k
 <= d, this implies |ne| <= 1/2. If k > d, we have |ne|
 <= 1/2
+ 2-(d + 1).
In either case, the first rounding of the product will deliver a result that
differs
from m by at most 1/2, and again by previous arguments, the
second rounding will round
to m. #

The preceding proof shows that the product can incur double-rounding only
if the quotient
does, and even then, it rounds to the correct result. The
proof also shows that extending
our reasoning to include the possibility of
double-rounding can be challenging even for a
program with only two
floating-point operations. For a more complicated program, it may
be
impossible to systematically account for the effects of double-rounding, not
to mention
more general combinations of double and extended double precision
computations.

Programming Language Support for Extended Precision

The preceding examples should not be taken to suggest that extended precision
per se is
harmful. Many programs can benefit from extended precision
when the programmer is

able to use it selectively. Unfortunately, current
programming languages do not provide
sufficient means for a programmer to
specify when and how extended precision should be
used. To indicate what
support is needed, we consider the ways in which we might want to
manage
the use of extended precision.

In a portable program that uses double precision as its nominal working
precision, there
are five ways we might want to control the use of a wider
precision:

1. Compile to produce the fastest code, using extended precision where
possible on
extended-based systems. Clearly most numerical software does not
require more of
the arithmetic than that the relative error in each operation
is bounded by the
"machine epsilon". When data in memory are stored in double
precision, the machine
epsilon is usually taken to be the largest relative
roundoff error in that precision,
since the input data are (rightly or wrongly)
assumed to have been rounded when
they were entered and the results will
likewise be rounded when they are stored.
Thus, while computing some of the
intermediate results in extended precision may
yield a more accurate result,
extended precision is not essential. In this case, we
might prefer that
the compiler use extended precision only when it will not
apprciably slow
the program and use double precision otherwise.

2. Use a format wider than double if it is reasonably fast and wide enough,
otherwise
resort to something else. Some computations can be performed more
easily when
extended precision is available, but they can also be carried out
in double precision
with only somewhat greater effort. Consider computing the
Euclidean norm of a
vector of double precision numbers. By computing the
squares of the elements and
accumulating their sum in an IEEE 754 extended
double format, with its wider
exponent range, we can trivially avoid premature
underflow or overflow for vectors
of practical lengths. On extended-based
systems, this is the fastest way to compute
the norm. On single/double
systems, an extended double format would have to be
emulated in software (if
one were supported at all), and such emulation would be
much slower than simply
using double precision, testing the exception flags to
determine whether
underflow or overflow occurred, and if so, repeating the
computation with
explicit scaling. Note that to support this use of extended precision,
a
language must provide both an indication of the widest available format that
is
reasonably fast, so that a program can choose which method to use, and
environmental parameters that indicate the precision and range of each format,
so
that the program can verify that the widest fast format is wide enough
(e.g., that it has
wider range than double).

3. Use a format wider than double even if it has to be emulated in software.
For more
complicated programs than the Euclidean norm example, the programmer
may
simply wish to avoid the need to write two versions of the program and
instead rely
on extended precision even if it is slow. Again, the language
must provide

environmental parameters so that the program can determine the
range and precision
of the widest available format.

4. Don't use a wider precision; round results correctly to the precision
of the double
format, albeit possibly with extended range. For programs that
are most easily
written to depend on correctly rounded double precision
arithmetic, including some
of the examples mentioned above, a language must
provide a way for the
programmer to indicate that extended precision must not
be used, even though
intermediate results may be computed in registers with a
wider exponent range than
double. (Intermediate results computed in this way
can still incur double-rounding if
they underflow when stored to memory: if
the result of an arithmetic operation is
rounded first to 53 significant bits,
then rounded again when it must be denormalized,
the final result may differ
from what would have been obtained by rounding just once
to a denormalized
number. Of course, this form of double-rounding is highly unlikely
to affect
any practical program adversely.)

5. Round results correctly to both the precision and range of the double
format. This
strict enforcement of double precision would be most useful for
programs that test
either numerical software or the arithmetic itself near the
limits of both the range and
precision of the double format. Such careful test
programs tend to be difficult to write
in a portable way; they become even more
difficult (and error prone) when they must
employ dummy subroutines and other
tricks to force results to be rounded to a
particular format. Thus, a
programmer using an extended-based system to develop
robust software that must
be portable to all IEEE 754 implementations would quickly
come to appreciate
being able to emulate the arithmetic of single/double systems
without
extraordinary effort.

No current language supports all five of these options. In fact, few languages
have
attempted to give the programmer the ability to control the use of
extended precision at
all. One notable exception is C9X, the latest revision
to the C language, which is now in
the final stages of standardization.

Like the current C standard, C9X allows an implementation to evaluate
expressions in a
format wider than that normally associated with their type,
but C9X recommends using
one of only three expression evaluation methods.
The three recommended methods are
characterized by the extent to which
expressions are "promoted" to wider formats, and the
implementation is
encouraged to identify which method it uses by defining the
preprocessor
macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, each
expression is
evaluated in a format that corresponds to its type; if
FLT_EVAL_METHOD is 1, float
expressions are promoted to
the format that corresponds to double; and if
FLT_EVAL_METHOD
is 2, float and double expressions are promoted to the
format that
corresponds to long double. (An implementation is
allowed to set FLT_EVAL_METHOD to
-1 to indicate that the expression
evaluation method is indeterminable.) C9X also requires

that the
<math.h> header file define the types float_t and
double_t, which are at least
as wide as float and
double, respectively, and are intended to match the types used
to
evaluate float and double expressions. For example,
if FLT_EVAL_METHOD is 2, both
float_t and double_t
are long double. Finally, C9X requires that the
<float.h>
header file define preprocessor macros that specify
the range and precision of the formats
corresponding to each floating-point
type.

The combination of features required or recommended by C9X supports some
of the five
options listed above but not all. For example, if an
implementation maps the long
double type to an extended double format
and defines FLT_EVAL_METHOD to be 2, the
programmer can reasonably
assume that extended precision is relatively fast, so programs
like the
Euclidean norm example can simply use intermediate variables of type
long
double (or double_t). On the other hand, the same
implementation must keep
anonymous expressions in extended precision even when
they are stored in memory (e.g.,
when the compiler must spill floating-point
registers), and it must store the results of
expressions assigned to variables
declared double to convert them to double precision
even if they could
have been kept in registers. Thus, neither the double nor the
double_t
type can be compiled to produce the fastest code on current
extended-based hardware.

Likewise, C9X provides solutions to some of the problem illustrated by
the examples in
this section but not all. A C9X version of the log1p
function is guaranteed to work
correctly if the expression 1.0 + x
is assigned to a variable (of any type) and that
variable used throughout.
A portable, efficient C9X program for splitting a double
precision number
into high and low parts, however, is more difficult: how can we split at
the
correct position and avoid double-rounding if we cannot guarantee that
double
expressions are rounded correctly to double precision? One
solution is to use the
double_t type to perform the splitting in
double precision on single/double systems and
in extended precision on
extended-based systems, so that in either case the arithmetic will
be correctly
rounded. Theorem 14 says that we can split at any bit position provided we
know the precision of the underlying arithmetic, and the
FLT_EVAL_METHOD and
environmental parameter macros should give us
this information. The following fragment
shows one possible implementation:

#include <math.h>

#include <float.h>

#if (FLT_EVAL_METHOD==2)

#define PWR2 LDBL_MANT_DIG - (DBL_MANT_DIG/2)

#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))

#define PWR2 DBL_MANT_DIG - (DBL_MANT_DIG/2)

#else
#error FLT_EVAL_METHOD unknown!

#endif

...

 double x, xh, xl;

 double_t m;

 m = scalbn(1.0, PWR2) + 1.0; // 2**PWR2 + 1

 xh = (m * x) - ((m * x) - x);

 xl = x - xh;

Of course, to find this solution, the programmer must know that double
expressions may
be evaluated in extended precision, that the ensuing
double-rounding problem can cause
the algorithm to malfunction, and that
extended precision may be used instead according
to Theorem 14. A more
obvious solution is simply to specify that each expression be
rounded
correctly to double precision. On extended-based systems, this merely
requires
changing the rounding precision mode, but unfortunately, C9X does not
provide a portable
way to do this. (Early drafts of the Floating-Point C
Edits, the working document that
specified the changes to be made to the C
standard to support floating-point,
recommended that implementations on systems
with rounding precision modes provide
fegetprec and fesetprec
functions to get and set the rounding precision, analogous to
the
fegetround and fesetround functions that get and set the
rounding direction. This
recommendation was removed before the changes were
made to the C9X draft.)

Coincidentally, C9X's approach to supporting portability among systems
with different
integer arithmetic capabilities suggests a better way to
support different floating-point
architectures. Each C9X implementation
supplies an <inttypes.h> header file that
defines those integer
types the implementation supports, named according to their sizes
and
efficiency: for example, int32_t is an integer type exactly 32 bits
wide,
int_fast16_t is the implementation's fastest integer type at
least 16 bits wide, and
intmax_t is the widest integer type supported.
One can imagine a similar scheme for
floating-point types: for example,
float53_t could name a floating-point type with
exactly 53 bit
precision but possibly wider range, float_fast24_t could name the
implementation's fastest type with at least 24 bit precision, and
floatmax_t could name
the widest reasonably fast type supported.
The fast types could allow compilers on
extended-based systems to generate
the fastest possible code subject only to the constraint
that the values of
named variables must not appear to change as a result of register
spilling.
The exact width types would cause compilers on extended-based systems to set
the rounding precision mode to round to the specified precision, allowing
wider range
subject to the same constraint. Finally, double_t could
name a type with both the
precision and range of the IEEE 754 double format,
providing strict double evaluation.
Together with environmental parameter
macros named accordingly, such a scheme would
readily support all five options
described above and allow programmers to indicate easily
and unambiguously
the floating-point semantics their programs require.

Must language support for extended precision be so complicated? On
single/double
systems, four of the five options listed above coincide, and
there is no need to differentiate

fast and exact width types. Extended-based
systems, however, pose difficult choices: they
support neither pure double
precision nor pure extended precision computation as
efficiently as a mixture
of the two, and different programs call for different mixtures.
Moreover,
the choice of when to use extended precision should not be left to compiler
writers, who are often tempted by benchmarks (and sometimes told outright by
numerical
analysts) to regard floating-point arithmetic as "inherently inexact"
and therefore neither
deserving nor capable of the predictability of integer
arithmetic. Instead, the choice must
be presented to programmers, and they
will require languages capable of expressing their
selection.

Conclusion

The foregoing remarks are not intended to disparage extended-based systems
but to
expose several fallacies, the first being that all IEEE 754 systems
must deliver identical
results for the same program. We have focused on
differences between extended-based
systems and single/double systems, but
there are further differences among systems within
each of these families.
For example, some single/double systems provide a single
instruction to
multiply two numbers and add a third with just one final rounding. This
operation, called a fused multiply-add, can cause the same program
to produce different
results across different single/double systems, and,
like extended precision, it can even
cause the same program to produce
different results on the same system depending on
whether and when it is
used. (A fused multiply-add can also foil the splitting process of
Theorem
6, although it can also be used in a non-portable way to perform multiple
precision multiplication without the need for splitting.) Even though the
IEEE standard
didn't anticipate such an operation, it nevertheless conforms:
the intermediate product is
delivered to a "destination" beyond the user's
control that is wide enough to hold it
exactly, and the final sum is
rounded correctly to fit its single or double precision
destination.

The idea that IEEE 754 prescribes precisely the result a given program must
deliver is
nonetheless appealing. Many programmers like to believe that they
can understand the
behavior of a program and prove that it will work correctly
without reference to the
compiler that compiles it or the computer that runs
it. In many ways, supporting this belief
is a worthwhile goal for the
designers of computer systems and programming languages.
Unfortunately, when
it comes to floating-point arithmetic, the goal is virtually impossible
to
achieve. The authors of the IEEE standards knew that, and they didn't attempt
to
achieve it. As a result, despite nearly universal conformance to (most of)
the IEEE 754
standard throughout the computer industry, programmers of portable
software must
continue to cope with unpredictable floating-point arithmetic.

If programmers are to exploit the features of IEEE 754, they will need
programming
languages that make floating-point arithmetic predictable. C9X
improves predictability to

some degree at the expense of requiring programmers
to write multiple versions of their
programs, one for each
FLT_EVAL_METHOD. Whether future languages will choose instead
to
allow programmers to write a single program with syntax that unambiguously
expresses
the extent to which it depends on IEEE 754 semantics remains to be
seen. Existing
extended-based systems threaten that prospect by tempting us
to assume that the compiler
and hardware can know better than the programmer
how a computation should be
performed on a given system. That assumption is
the second fallacy: the accuracy required
in a computed result depends not on
the machine that produces it but only on the
conclusions that will be drawn
from it, and of the programmer, the compiler, and the
hardware, at best only
the programmer can know what those conclusions may be.

Copyright 1997 Sun Microsystems, Inc.

