Milestone-Proposal talk:The Giant Metrewave Radio Telescope (GMRT) – Pune, India

From IEEE Milestones Wiki
Revision as of 11:45, 31 July 2020 by Juan Carlos (talk | contribs) (→‎Review and support by Dr. Jacob Baars -- ~~~~: new section)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Advocates and reviewers will post their comments below. In addition, any IEEE member can sign in with their ETHW login (different from IEEE Single Sign On) and comment on the milestone proposal's accuracy or completeness as a form of public review.

Review and support by Dr. Jacob Baars -- Juan Carlos (talk) 11:45, 31 July 2020 (UTC)

I am happy to fully support this initiative. I consider myself capable in this matter, having spent most of my career closely attached to radio telescope projects at a leading level. I was assistant project manager for the Westerbork Synthesis Radio Telescope in the Netherlands around 1970. Upon joining the Max-Planck-Institut für Radioastronomie in Bonn, Germany, I was Project Manager of the IRAM 30-m Millimeter Telescope in Spain (19180s) and the Heinrich Hertz Sub-millimeter Telescope in Arizona (1990s). After these projects I was Project Engineer for the Large Millimeter Telescope in Mexico during the design phase and I acted in several senior functions in the ALMA Project as ESO representative.

I have read the GMRT proposal that was attached to your message. It paints a good and complete picture of the project from the initial scientific justification and technical layout to the realization of the hardware in a remarkable indigenous concentration. I support it fully.

I would like to stress one aspect that for me is the most impressive achievement of the project. With the Ooty Telescope the Indian group of radio astronomers had already shown the capability to design and build instruments for a specific scientific purpose. When they considered how to realize a more powerful radio telescope, they recognized that concentrating on a low frequency instrument was not only astronomically highly relevant, because of the lack of such instruments world-wide, but also a viable avenue towards designing and building economically acceptable antenna structures. In short: they needed to build something big for a rock-bottom cost. The resulting design of the original SMART (Stretched Mesh Attached to Rope Trusses) telescope satisfied their goals: a high quality antenna, locally designed and constructed for an affordable low price.

With the GMRT India joined the "high technology" nations with an example of high performance technology, fully developed in the country, providing the science of astronomy with significant observational extension.

Jacob Baars, Member of the Historical Radio Astronomy working group of the IAU (Intl. Astronomical Union) Book: “Radio Telescope Reflectors - Historical Development of Design and Construction” , 2017